Reaction participants Show >> << Hide
-
Namehelp_outline
an N4-{β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
Identifier
RHEA-COMP:20022
Reactive part
help_outline
- Name help_outline an N4-{β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-Asn residue Identifier CHEBI:232681 Charge 0 Formula C66H108N6O47 SMILEShelp_outline [C@H]1([C@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O[C@H]3[C@@H]([C@H]([C@H]([C@H](O3)CO)O)O)O)O)NC(C)=O)O[C@@H]4[C@@H]([C@@H](O[C@@H]([C@H]4O)CO[C@@H]5[C@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O[C@H]7[C@@H]([C@H]([C@H]([C@H](O7)CO)O)O)O)O)NC(=O)C)O[C@H]8[C@@H]([C@H]([C@@H](O[C@@H]8CO)O[C@H]9[C@@H]([C@H]([C@@H](O[C@@H]9CO)NC(C[C@@H](C(=O)*)N*)=O)NC(C)=O)O)NC(C)=O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CMP-N-acetyl-β-neuraminate Identifier CHEBI:57812 (Beilstein: 5899715) help_outline Charge -2 Formula C20H29N4O16P InChIKeyhelp_outline TXCIAUNLDRJGJZ-BILDWYJOSA-L SMILEShelp_outline [H][C@]1(O[C@](C[C@H](O)[C@H]1NC(C)=O)(OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(N)nc1=O)C([O-])=O)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 106 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
an N4-{α-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-asparaginyl-[protein]
Identifier
RHEA-COMP:20024
Reactive part
help_outline
- Name help_outline an N4-{α-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→2)-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-L-Asn residue Identifier CHEBI:232682 Charge -1 Formula C77H124N7O55 SMILEShelp_outline [C@H]1([C@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O[C@H]3[C@@H]([C@H]([C@H]([C@H](O3)CO[C@]4(O[C@@]([C@@H]([C@H](C4)O)NC(C)=O)([H])[C@@H]([C@@H](CO)O)O)C([O-])=O)O)O)O)O)NC(C)=O)O[C@@H]5[C@@H]([C@@H](O[C@@H]([C@H]5O)CO[C@@H]6[C@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)CO)O[C@H]8[C@@H]([C@H]([C@H]([C@H](O8)CO)O)O)O)O)NC(=O)C)O[C@H]9[C@@H]([C@H]([C@@H](O[C@@H]9CO)O[C@H]%10[C@@H]([C@H]([C@@H](O[C@@H]%10CO)NC(C[C@@H](C(=O)*)N*)=O)NC(C)=O)O)NC(C)=O)O)O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CMP Identifier CHEBI:60377 Charge -2 Formula C9H12N3O8P InChIKeyhelp_outline IERHLVCPSMICTF-XVFCMESISA-L SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 193 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:82947 | RHEA:82948 | RHEA:82949 | RHEA:82950 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Branch specificity of bovine colostrum CMP-sialic acid: N-acetyllactosaminide alpha 2----6-sialyltransferase. Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins.
Joziasse D.H., Schiphorst W.E., van den Eijnden D.H., van Kuik J.A., van Halbeek H., Vliegenthart J.F.
By use of 500-MHz 1H NMR spectroscopy, the branch specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase towards a biantennary glycopeptide and oligosaccharides of the N-acetyllactosamine type, differing in completeness and structure of their core portion, ... >> More
By use of 500-MHz 1H NMR spectroscopy, the branch specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase towards a biantennary glycopeptide and oligosaccharides of the N-acetyllactosamine type, differing in completeness and structure of their core portion, was investigated. In agreement with earlier reports (Van den Eijnden, D. H., Joziasse, D. H., Dorland, L., Van Halbeek H., Vliegenthart, J. F. G., and Schmid, K. (1980) Biochem. Biophys. Res. Commun. 92, 839-845), it appears that the enzyme strongly prefers the galactosyl residue at the Man alpha 1----3Man branch of the biantennary glycopeptide for attachment of the first sialic acid residue. This branch specificity is fully preserved with the structure (formula; see text) Reduction of the reducing N-acetylglucosaminyl residue in this structure, however, leads to a decreased branch specificity, whereas removal of this residue results in a random attachment of sialic acid to the galactoses at both branches. The decrease in branch specificity is accompanied by a reduction in the rate of sialic acid transfer to the galactose at the alpha 1----3 branch. Our results indicate that the presence of the aforementioned N-acetylglucosaminyl residue is a minimal structural requirement for branch specificity of the sialyltransferase. We propose that in the interaction of the sialyltransferase with its substrates, this N-acetylglucosaminyl residue functions as a recognition site mediating the correct positioning of the substrate on the enzyme. << Less
-
A universal glycoenzyme biosynthesis pipeline that enables efficient cell-free remodeling of glycans.
Jaroentomeechai T., Kwon Y.H., Liu Y., Young O., Bhawal R., Wilson J.D., Li M., Chapla D.G., Moremen K.W., Jewett M.C., Mizrachi D., DeLisa M.P.
The ability to reconstitute natural glycosylation pathways or prototype entirely new ones from scratch is hampered by the limited availability of functional glycoenzymes, many of which are membrane proteins that fail to express in heterologous hosts. Here, we describe a strategy for topologically ... >> More
The ability to reconstitute natural glycosylation pathways or prototype entirely new ones from scratch is hampered by the limited availability of functional glycoenzymes, many of which are membrane proteins that fail to express in heterologous hosts. Here, we describe a strategy for topologically converting membrane-bound glycosyltransferases (GTs) into water soluble biocatalysts, which are expressed at high levels in the cytoplasm of living cells with retention of biological activity. We demonstrate the universality of the approach through facile production of 98 difficult-to-express GTs, predominantly of human origin, across several commonly used expression platforms. Using a subset of these water-soluble enzymes, we perform structural remodeling of both free and protein-linked glycans including those found on the monoclonal antibody therapeutic trastuzumab. Overall, our strategy for rationally redesigning GTs provides an effective and versatile biosynthetic route to large quantities of diverse, enzymatically active GTs, which should find use in structure-function studies as well as in biochemical and biomedical applications involving complex glycomolecules. << Less
Nat Commun 13:6325-6325(2022) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Exploiting Substrate Specificities of 6-<i>O</i>-Sulfotransferases to Enzymatically Synthesize Keratan Sulfate Oligosaccharides.
Wu Y., Vos G.M., Huang C., Chapla D., Kimpel A.L.M., Moremen K.W., de Vries R.P., Boons G.J.
Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newl ... >> More
Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newly discovered substrate specificities of relevant sulfotransferases. The premise of the approach is that recombinant GlcNAc-6-<i>O</i>-sulfotransferases (CHST2) only sulfate terminal GlcNAc moieties to give GlcNAc6S that can be galactosylated by B4GalT4. Furthermore, CHST1 can modify the internal galactosides of a poly-LacNAc chain; however, it was found that a GlcNAc6S residue greatly increases the reactivity of CHST1 of a neighboring and internal galactoside. The presence of a 2,3-linked sialoside further modulates the site of modification by CHST1, and a galactoside flanked by 2,3-Neu5Ac and GlcNAc6S is preferentially sulfated over the other Gal residues. The substrate specificities of CHST1 and 2 were exploited to prepare a panel of KS oligosaccharides, including selectively sulfated <i>N</i>-glycans. The compounds and several other reference derivatives were used to construct a microarray that was probed for binding by several plant lectins, Siglec proteins, and hemagglutinins of influenza viruses. It was found that not only the sulfation pattern but also the presentation of epitopes as part of an <i>O</i>- or <i>N</i>-glycan determines binding properties. << Less
JACS Au 3:3155-3164(2023) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.